61 research outputs found

    Topological phonon analysis of the 2D buckled honeycomb lattice: an application to real materials

    Full text link
    By means of group theory, topological quantum chemistry, first-principles and Monte Carlo calculations, we analyze the topology of the 2D buckled honeycomb lattice phonon spectra. Taking the pure crystal structure as an input, we show that eleven distinct phases are possible, five of which necessarily have non-trivial topology according to topological quantum chemistry. Another four of them are also identified as topological using Wilson loops in an analytical model that includes all the symmetry allowed force constants up to third nearest neighbors, making a total of nine topological phases. We then compute the ab initio phonon spectra for the two-dimensional crystals of Si, Ge, P, As and Sb in this structure and construct its phase diagram. Despite the large proportion of topological phases found in the analytical model, all of the crystals lie in a trivial phase. By analyzing the force constants space using Monte Carlo calculations, we elucidate why topological phonon phases are physically difficult to realize in real materials with this crystal structure

    Higher-Order Topological Insulators

    Get PDF
    Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional topological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is Z2\mathbb{Z}_2-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is Z\mathbb{Z}-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi2_2TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.Comment: 8 pages (4 figures) and 16 pages supplemental material (7 figures

    Electronic properties, correlated topology and Green's function zeros

    Full text link
    There is extensive current interest about electronic topology in correlated settings. In strongly correlated systems, contours of Green's function zeros may develop in frequency-momentum space, and their role in correlated topology has increasingly been recognized. However, whether and how the zeros contribute to electronic properties is a matter of uncertainty. Here we address the issue in an exactly solvable model for Mott insulator. We show that the Green's function zeros contribute to several physically measurable correlation functions, in a way that does not run into inconsistencies. In particular, the physical properties remain robust to chemical potential variations up to the Mott gap as it should be based on general considerations. Our work sets the stage for further understandings on the rich interplay among topology, symmetry and strong correlations.Comment: 15 pages, 3 figure

    Monopole-like orbital-momentum locking and the induced orbital transport in topological chiral semimetals

    Full text link
    The interplay between chirality and topology nurtures many exotic electronic properties. For instance, topological chiral semimetals display multifold chiral fermions that manifest nontrivial topological charge and spin texture. They are an ideal playground for exploring chirality-driven exotic physical phenomena. In this work, we reveal a monopole-like orbital-momentum locking texture on the three-dimensional Fermi surfaces of topological chiral semimetals with B20 structures (e.g., RhSi and PdGa). This orbital texture enables a large orbital Hall effect (OHE) and a giant orbital magnetoelectric (OME) effect in the presence of current flow. Different enantiomers exhibit the same OHE which can be converted to the spin Hall effect by spin-orbit coupling in materials. In contrast, the OME effect is chirality-dependent and much larger than its spin counterpart. Our work reveals the crucial role of orbital texture for understanding OHE and OME effects in topological chiral semimetals and paves the path for applications in orbitronics, spintronics, and enantiomer recognition.Comment: 23 pages, 5 figure

    Large anomalous Hall, Nernst effect and topological phases in the 3d-4d/5d based oxide double perovskites

    Get PDF
    Magnetism and spin-orbit coupling are two fundamental and interconnected properties of oxide materials, that can give rise to various topological transport phenomena, including anomalous Hall and anomalous Nernst effects. These transport responses can be significantly enhanced by designing an electronic structure with a large Berry curvature. In this context, rocksalt-ordered double perovskites (DP), denoted as A2BB’O6, with two distinct transition metal sites are very powerful platforms for exploration and research. In this work, we present a comprehensive study based on the intrinsic anomalous transport in cubic and tetragonal stable DP compounds with 3d-4d/5d elements. Our findings reveal that certain DP compounds show a large anomalous Hall effect, displaying topological band crossings in the proximity of the Fermi energy

    Double crystallographic groups and their representations on the Bilbao Crystallographic Server

    Full text link
    A new section of databases and programs devoted to double crystallographic groups (point and space groups) has been implemented in the Bilbao Crystallographic Server (http://www.cryst.ehu.es). The double crystallographic groups are required in the study of physical systems whose Hamiltonian includes spin-dependent terms. In the symmetry analysis of such systems, instead of the irreducible representations of the space groups, it is necessary to consider the single- and double-valued irreducible representations of the double space groups. The new section includes databases of symmetry operations (DGENPOS) and of irreducible representations of the double (point and space) groups (REPRESENTATIONS DPG and REPRESENTATIONS DSG). The tool DCOMPATIBILITY RELATIONS provides compatibility relations between the irreducible representations of double space groups at different k-vectors of the Brillouin zone when there is a group-subgroup relation between the corresponding little groups. The program DSITESYM implements the so-called site-symmetry approach, which establishes symmetry relations between localized and extended crystal states, using representations of the double groups. As an application of this approach, the program BANDREP calculates the band representations and the elementary band representations induced from any Wyckoff position of any of the 230 double space groups, giving information about the properties of these bands. Recently, the results of BANDREP have been extensively applied in the description and the search of topological insulators.Comment: 32 pages, 20 figures. Two extra figures and minor typo mistakes fixed. Published versio
    • …
    corecore